On the "Reducibility" of Arctangents of Integers

نویسنده

  • E. Kowalski
چکیده

This is discussed a bit further in [1] with some numerical and theoretical evidence. In this note we point out the link of Conjecture 3 with the recent very deep work of Duke, Friedlander, and Iwaniec [2] on roots of quadratic congruences modulo primes and give some more support (heuristic and theoretical) for the conjecture, showing also that it is undoubtedly a very hard problem. The condition p | n + 1 that occurs in Lemma 1 means that n is a root of the quadratic congruence X + 1 = 0 (mod p). We recall Fermat’s classical theorem that this congruence has two solutions if p ≡ 1 (mod 4) (if ν is one, the other is −ν), none if p ≡ 3 (mod 4) and one if p = 2 (see, for instance, [7] for a proof). If ν = −1 (mod p), then the fractional part {ν̃/p} of ν̃/p, where ν̃ is any integer congruent to ν modulo p, is well-defined in [0, 1]. According to the lemma, arctanm is irreducible if and only if there exists a prime p such that p | m+1 and p > 2m. This prime p is then unique, since p 6 q implies pq > 4m > m + 1. Thus one can write

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a sequence related to the coprime integers

The asymptotic behaviour of the sequence with general term $P_n=(varphi(1)+varphi(2)+cdots+varphi(n))/(1+2+cdots+n)$, is studied which appears in the studying of coprime integers, and an explicit bound for the difference $P_n-6/pi^2$ is found.

متن کامل

Factorization of Quadratic Polynomials in the Ring of Formal Power Series over Z

We establish necessary and sufficient conditions for a quadratic polynomial to be irre-ducible in the ring Z[[x]] of formal power series over the integers. In particular, for polynomials of the form p n + p m βx + αx 2 with n, m ≥ 1 and p prime, we show that reducibility in Z[[x]] is equivalent to reducibility in Zp[x], the ring of polynomials over the p-adic integers.

متن کامل

Notes for the Proof Theory Course

4 Programming in system F 17 4.1 Free structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Representing free structures in system F . . . . . . . . . . . . . . 19 4.3 The case of integers: representable functions . . . . . . . . . . . . 22 4.4 Towards normalization: the reducibility technique . . . . . . . . 23 4.5 Reducibility and polymorphism . . . . . . . . . . . . . . ....

متن کامل

On Turing Reducibility

We show that the transitivity of pointwise Turing reducibility on the recursively enumerable sets of integers cannot be proven in P− + IΣ1, first order arithmetic with induction limited to Σ1 predicates. We produce a example of intransitivity in a nonstandard model of P+IΣ1 by a finite injury priority construction.

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2004